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ABSTRACT 
 
 
 
In order to improve the prompt response from an impulse radiating antenna (IRA) 

a number of studies have suggested controlling the spatial distribution of the aperture 

fields by changing the feed arm angle.  Other work has suggested that proper shaping of 

the aperture can further enhance the radiated signal for a given feed structure.  This paper 

shows how the radiated prompt response can be maximized for a given feed arm 

configuration by shaping the aperture to eliminate fields orientated in the wrong 

direction. 

The percent increase in the prompt radiated electric field for a 200 Ω IRA with a 

ideally shaped aperture compared to a standard circular aperture ranged from 0.42% to 

39.94% depending on the input electrode angle.  For the most common electrode angles 

of 45° and 60° the increases are 6.00% and 16.63% respectively. 
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EXECUTIVE SUMMARY 
 

The IRA is a class of antenna that has been developed in order to radiate ultra-

wideband pulses of electromagnetic radiation [Baum et el, 1999]. These antennas use a 

non-dispersive transverse electromagnetic (TEM) transmission line to feed a focusing 

optic, usually a lens or a reflector. The focused aperture radiates (in the far-field) the 

approximate derivative of the signal applied to the feed, so when the IRA is fed by a fast-

rising step, a short-duration, high-amplitude, impulse-like waveform is produced. 

It is well known that the radiated electric field (Erad) of an IRA is proportional to 

the surface integral of the transverse electric field (Ey) over the focused aperture [Baum et 

el, 1999] 

( ),
a

rad a yS
E h E x y∝ ∝ ∫∫ ds ,     (1) 

where ha is termed the aperture height and Sa is the area of the focused aperture.  This 

integral is often computed by writing Ey as the gradient of a potential function in the 

complex plane and applying Green’s theorem 

1
a

rad a C
E h udx

v
∝ = ∫v ,     (2) 

where u is the electric potential, v is the magnetic potential and Ca is the closed contour 

enclosing Sa [Baum et el, 1999]. 

 

CHOOSING THE IDEAL SHAPE OF THE APERTURE 

Equation 1 shows that the far field is determined by the y-component of the 

electric field everywhere in the aperture. If one could eliminate the areas of the aperture 

where Ey is oriented in the wrong direction, the prompt radiated response from the IRA 

would be improved.  In order to find these areas of negative contribution we must first 

calculate the electric field in the aperture.  Solving the Laplace equation for the TEM feed 

structure and taking the gradient of the resulting electric potential accomplish this. 
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be made of some non-reflecting material, and metalization applied only to the region 

inside the ideal contour.  A second question is whether, for a given aperture size, the 

response can be improved by optimizing the position of the circle of symmetry relative to 

the maximum aperture size while forcing the aperture boundary to follow the ideal 

contour.  Figure 2 shows a number of different ideal aperture shapes relative to the circle 

of symmetry. 

The aperture height ha in Equation 2 is a useful tool to find the optimum position 

of the circle of symmetry relative to the aperture boundary.  A high value for ha is desired 

since ha is proportional to the prompt radiated electric field. Figure 3 is a plot of the 

normalized aperture height vs. the relative radius of the ideal shaped aperture for a 

number of feed arm size and angle combinations corresponding to a 200Ω input 

impedance. The circle of symmetry is at R=1.  The angles are measured clockwise from 

the y-axis. 

The maximum ha in Figure 3 is near an electrode angle of 30º at a radius of 

R=1.125 relative to the circle of symmetry.  It is important to note that the ha increase in 

Figure 3 is not caused by increasing the actual size of the aperture.  Two factors cause 

this increase.  First, the edge of the aperture is following the ideal contour instead of the 

circle of symmetry.  Second, by changing the size of the electrodes, the circle of 

symmetry is being made larger or smaller relative to the edge of the aperture.  Thus for a 

given size, the aperture encompasses the portions of the input electric field that have the 

greatest positive effect on the prompt radiated electric far field. Table 1 shows the 

improvement in ha due to using the ideal contour/optimum circle of symmetry position 

over a circular shaped aperture with its boundary on the circle of symmetry. 
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Figure 3. Aperture height normalized by the size of the focusing aperture.  The dashed lines represent a standard 
circular aperture. 

 

 

    Relative 
Feed 
Angle 

ha 
R=1 

ha 
Ideal 

ha 
Increase 

Aperture 
Size 

75º 0.2537 0.3562 40% 1.15
60º 0.4797 0.5563 16% 1.15
45º 0.6482 0.6870 5.9% 1.15
30º 0.7363 0.7494 1.8% 1.125
15º 0.7265 0.7304 0.5% 0.95

 
Table 1.  Increase in ha Due to Aperture Boundary 
Following Ideal Contour and Optimum Circle of Sym. 
Position 
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EXPERIMENTAL RESULTS 

An experiment was conducted to validate the computational methods used in 

determining the ideal contours and the values of ha. An antenna was configured as a half-

lens IRA over a ground plane and measured on receive.  The transmitted electric field 

from an antenna is the derivative of the received field under the same excitation due to 

reciprocity [Baum et el, 1999].  The transmitting antenna was a 4-ns monocone over the 

same ground plane, radiating a 50-ps risetime, 10V step.  Covering portions of the lens 

with metal foil simulated the different aperture contours. 

Figure 4 compares calculated values for 200Ω TEM electrode configurations with 

the experimental results denoted by the blue x’s.  The results follow the same trend as the 

calculations.  Notice for the 30˚ case that the radius of symmetry is at 8 inches and the 

maximum value for ha is at a radius of 9.  This corresponds to a normalized aperture 

radius of 1.125, which is the same as the value in Table 1.  Also, for the most part, the 

increase in ha appears to be on the same order of magnitude as reported in Table 1.  

 

Figure 4. Comparison between experimental and calculated results. 
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CONCLUSION 

The radiated far field of an IRA can be improved by changing the shape of the 

aperture to eliminate the portions of the aperture that contribute negatively to the far 

field.  There is a more dramatic increase at larger TEM feed electrode angles.  

Experiment closely follows the calculated results.  These results can be used to optimize 

the prompt radiated field from a fixed aperture shape and size by scaling the circle of 

symmetry relative to the maximum aperture size and by eliminating the portions of the 

aperture outside the ideal contour. 
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I. INTRODUCTION 
Equation Section 1 
 

A. BACKGROUND 

Impulse-radiating antennas (IRA) are a class of antenna designed to radiate ultra-

wideband pulses of electromagnetic radiation.  IRAs are well suited for high power 

impulse electronic warfare applications whose objective is generate large amounts of 

electromagnetic energy.  These antennas use a non-dispersive transverse electromagnetic 

(TEM) transmission line to feed a lens or reflector focusing optic.  The early time field 

radiated by the focusing optic is approximately the derivative of the signal applied to the 

feed.  Thus when the IRA is fed by a fast rising step, a short duration, high amplitude 

impulse like waveform is produced. 

 

 

Figure 1.1.  Example of an impulse radiating antenna. [From: Farr 2001] 
 

Other applications for IRAs include: antennas that operate simultaneously on multiple 

frequencies [Baum et al, 1999], ground-penetrating radar [Rhebergen, 1998], and radar 

that is used in highly cluttered environments [Baum and Farr, 1993].   
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Most reflector IRAs have been built with two pairs of crossed, coplanar feed arms 

oriented at 90º angles with a feed impedance of 200Ω, similar to the IRA pictured in 

Figure 1.1.  Recently, it has been suggested that different feed arm angles might produce 

increased radiated fields [Baum, 1998; Tyo, 1999].  New experimental results using 30º 

(clockwise from vertical) feed arms for an IRA have produced significant improvements 

in prompt radiated fields; with the additional benefit of reducing cross-polarized response 

of the antenna [Farr and Bowen, 2000]. 

 In practice there are three ways to increase the radiated field of an IRA with 

given input impedance.  First is to increase the input voltage on the feed arms of the 

antenna.  However, this voltage cannot be increased indefinitely without reaching the 

dielectric breakdown of air or some other medium.  A second approach is to shorten the 

rise time of the input waveform.  Since the transmitted response of and IRA is the 

derivative of the input excitation, a faster input rise time will increase the magnitude of 

the response. 

A third approach involves designing the antenna aperture to increase the radiated 

response of the antenna.  Three ways in which this can be accomplished are, changing the 

angle of the input TEM feed arms, changing the shape of the aperture, and changing the 

size of the aperture relative to the size of the TEM feed arms. As mentioned earlier, 

impulse radiating antennas are now being built with TEM feed arms orientated 120˚ apart 

vice 90˚.  Optimizing the shape and relative size of an IRA aperture has not yet been 

undertaken and is the subject of this thesis. 

As discussed in Chapter II the radiated field of an IRA is proportional to the 

integral of the electric field everywhere on the surface of the aperture.  Not all of this 

electric field on the aperture surface is orientated in the correct direction and thus 

contributes destructively to the radiated field.  So, by trimming off portions of the 

aperture with the electric field orientated in the wrong direction, the radiated electric field 

should be increased.  In conjunction with trimming the aperture, the size of the aperture 

relative to the size of the input TEM electrodes plays a part in the magnitude of the 

radiated field.  Should the size of the aperture be made larger or smaller relative to the 

size of the input electrodes? 
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B. OBJECTIVE 

The objective of this work is to show that proper shaping and sizing of the 

aperture can increase the radiated field in the far field for an IRA.  To accomplish this, 

the ideal aperture shape is calculated for a number of different TEM feed configurations.  

All of the electric field on an ideal aperture will be orientated in the correct direction to 

contribute constructively to the radiated field. 

This ideal aperture shape is applied to different “aperture windows” in order to 

maximize the radiated field.  Often the size and shape of an antenna aperture is decided 

by factors other than antenna optimization.  For example, the available space for an IRA 

aperture might be a 1-meter diameter circle. 

An experiment is also conducted to verify the methods used to compute the 

effects on radiated field due to aperture trimming. 

C. RELATED WORK 

IRAs were originally an outgrowth of Air Force research in nuclear-

electromagnetic-pulse (EMP) simulators used to test electronic systems.  Many 

applications today require fast rising, narrow electromagnetic pulses, though at much 

smaller power levels then that of an EMP [Baum et al, 1999].  The theory and operation 

of IRAs has been extensively researched and documented mainly by the Air Force 

Research Lab (AFRL) and its associates.  Two recently conducted studies by the AFRL 

directly lead into this work.  One is on the effect of different focused aperture geometries 

on the radiated electric field [Tyo and Buchenauer, 2001] and another on optimizing the 

input feed impedance by changing the geometry of the TEM feed electrodes [Tyo, 1999]. 

1.   Effect of Different Focused Aperture Geometries 

An experiment was conducted at AFRL to see if the prompt response from an 

IRA can be accurately predicted when the shape of the focusing aperture is changed.  A 

lens IRA operating in the receive mode was placed on a 40 ft ground plane opposite a 40 

nanosecond monocone antenna that was transmitting 10 Volt 10 nanosecond duration 

voltage steps.  The derivative of the received step response of an IRA is equal to the 

transmitted step response by a property called reciprocity.  [Baum et al, 1999] This 

allows data that is collected on an IRA operating in the receive mode to be applied to the 
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same antenna operating in the transmit mode.  In order to change the shape of the 

focusing aperture, portions of the lens were blocked with metal foil.  This effectively 

prevents the electric field on the blocked portions of the lens from contributing to the 

prompt response of the antenna. [Tyo and Buchenauer, 2001] 

Figure 1.2 shows the six different apertures that were tested in this experiment.  

The small triangle represents the TEM horn and the rectangles represent the metal foil 

used to block the prompt response of the antenna.  The received step responses and 

corresponding transmitted responses are shown in Figure 1.3.  

Notice in the unblocked case, case E of Figures  1.2 and 1.3, that the received step 

response is a fast rising step with a gradual linear decay and its corresponding transmitted 

step response is a narrow impulse like waveform.  Next take a look at case A where the 

aperture is blocked everywhere below the TEM input electrodes.  This received and 

transmitted step responses both become negative suggesting that the covered areas of the 

lens block electric field that would have contributed constructively to the step response.  

Finally in case F, the aperture is blocked everywhere above the TEM feed electrodes.  

The received and transmitted responses both have a greater magnitude than the unblocked 

case E.  [Tyo and Buchenauer, 2001] 

 

Figure 1.2.  Six different apertures tested. A. Horizontal block B. Aperture blocked C. 
Blocking strip D. Natural aperture E. “Infinite aperture F. Strip aperture. [After: Tyo and 
Buchenauer, 2001] 

 

This shows that altering the shape of the focusing aperture can increase or 

decrease the magnitude of the prompt response.  Another outcome of this experiment 

showed that the calculated response was within 10% of the measured response with the 
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difference mainly contributed to experimental error. The next task is to determine the 

optimum aperture shape, which is accomplished in this thesis. 

 

Figure 1.3.  Prompt receive step and impulse responses of the lens IRA with the six 
aperture configurations depicted in Figure 1.2.  The aperture height ha is proportional to 
the magnitude of the initial rise of the step responses or the magnitude of the impulse 
responses.  The step radiated response is equivalent to the impulse receive response.  The 
risetime of all six measured signals was between 50 and 55 ps.  The impulse responses 
were obtained by numerical differentiation of the step responses.  A Gaussian low-pass 
filter (σ = 8 ps) was used to eliminate numerical nose.  The impulse responses are offset 
on the time axis for clarity.  [From: Tyo and Buchenauer, 2001] 
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2. Optimizing Feed Arm Geometry 

Changing the angle of the input TEM feed electrodes was one of the ways 

mentioned above to increase the prompt response of an IRA.  A study was conducted to 

compute the effect of TEM feed electrode angle on the radiated field of an IRA.    The 

aperture height (ha) parameter is common to a number of different performance metrics 

discussed in this paper and is proportional to the surface integral of the electric field on 

the focusing aperture.  Which in turn is proportional to the radiated electric field.  This 

implies that for a given input impedance, maximizing ha will also maximize the prompt 

response of the IRA. Therefore, ha was the parameter that was maximized to determine 

the optimum input feed electrode angle.  [Tyo, 1999] 

The electric potential distribution for numerous circular shaped 4-arm IRAs was 

computed.  The angle of the input feed electrodes ranged from 3˚to 87˚ measured 

counterclockwise from horizontal*.  It was found that for a given input impedance, there 

was a corresponding optimum feed arm angle, and vice versa. In fact as shown if Figure 

1.4 the relationship between the optimum feed angle and impedance is essentially linear.  

This paper includes much discussion on the effects of changing the angle of the feed arms 

and it provides a method on designing an antenna that maximizes the prompt response by 

choosing the optimum feed arm angle. 

Two important aspects of this paper are used directly in this thesis.  First, the 

computed electric potential distributions for the different feed arm electrode size and 

angle combinations were stored in a database.  The data contained in this database was 

used as a starting point in this thesis.  Second, the fact that the aperture height parameter 

ha is proportional to the magnitude of the prompt response is also used in this thesis to 

determine the optimum aperture shape. 

                                                 
* Since Tyo wrote this paper, the convention for measuring the angle of the electrodes has been 

changed.  Now the electrode angle is measured clockwise from the vertical axis of the IRA.  This new 
convention is used in this thesis. 
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Figure 1.4.  Optimum feed impedance as a function of [electrode angle].  Note that the 
optimum angle for impedances of 100Ω, 150Ω, 200Ω, and 250Ω are approximately 30˚, 
45˚, 60˚, and 75˚ respectively. [After: Tyo, 1999] 

 

D. OUTLINE 

The theory of how an IRA works and how the prompt radiated electric field can 

be computed is contained in Chapter II.  Chapter III shows how the ideal aperture shape 

is found.  In Chapter IV, the ideal aperture shape is applied to circular aperture windows 

and the optimum aperture shape is found.  The experiment conducted at the AFRL ultra-

wideband antenna range to verify the calculated results is contained in Chapter V.  

Finally some conclusions and recommendations are made in Chapter VI. 
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II. THEORY 
Equation Section 5 
 

A. OPERATION OF A REFLECTOR IRA 

The makeup of an IRA usually consists of a conical TEM wave launcher 

connected to a parabolic reflector.  The TEM electrodes are excited with a step voltage 

source and a spherical TEM wave is sent into the parabolic reflector.  The reflector 

converts the spherical wave into a plane wave in the near field, and in the far field the 

radiated wave behaves as the derivative of the input field.  Figure 2.1 is an example time 

waveform of the far field magnitude.  The pre-pulse is associated with the field given off 

the voltage source that reaches the far-field before the reflected response does.  The 

impulse response is the focused prompt response from the IRA that is seen along the 

bore-sight of the antenna.  [Baum, 1989] For electronic warfare applications it is desired 

to maximize the magnitude of this impulse response.  The late time response is caused by 

the decay of the input step excitation, feed blockage, unfocused reflections from the 

reflector among other factors. [Giri and Baum, 1994]  This portion of the wave-form is 

not as important in this application. 

 

Figure 2.1.  Far-field waveform from an impulse radiating antenna. 

 

B.  RADIATED FIELD OF AN IRA 

The main objective of this work is to maximize the radiated electric field of an 

IRA by proper shaping of the antenna aperture without increasing the overall size of the 

aperture.  In order to accomplish this a relationship between the radiated electric field and 
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the antenna aperture needs to be found.  Normally, for an antenna the radiation 

characteristics can be found if the current distribution on the surface of the antenna is 

known everywhere and at anytime.  For simple geometries, such as a wire antenna, the 

current distribution is relatively easy to find.  However, the current distribution on the 

electrodes and reflector of an IRA is not easy to find so alternate methods are typically 

used to find the radiation characteristics.  The IRA belongs to a class of antenna called 

aperture antennas and for this class of antennas the radiated fields can be determined 

using the Field Equivalence Principle. 

1. Field Equivalence Principle 

By Huygens’ Principle and the Uniqueness Theorem, the fields in a source-free 

region can be determined if the tangential electrical and magnetic fields over a closed 

surface inside that region are known [Balanis, 1982].  The Field Equivalence Principle 

takes this one step further, by enclosing an electromagnetic source with an imaginary 

closed surface: 

…the fields outside an imaginary closed surface are obtained by placing 
over the closed surface suitable electric- and magnetic-current densities 
which satisfy the boundary conditions.  The current densities are selected 
so that the fields inside the closed surface are zero and outside they are 
equal to the radiation produced by the actual sources. [Balanis, 1982] 

Figure 2.2a shows a source denoted by the electric and magnetic current densities 

J1 and M1 that produces electric and magnetic fields E1 and H1 in the region V1.  Using 

the Equivalence Principle, the sources are replaced in Figure 2.2b by surface S and 

equivalent sources satisfying the following boundary conditions [Balanis, 1982]: 

 
� [ ]
� [ ]

2

1 2

,

.
s

s

= × −

= − × −

1J n H H

M n E E
 (2.1) 

The surface densities in Equation 2.1 produce the same fields in region V1 as 

those of Figure 2.2a. However, inside the surface there are new fields E2 and H2. Since 

the fields inside surface S can be anything, as long as the boundary conditions are met, 

they are typically assumed to be zero.  This case, shown in Figure 2.2c is known as 
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Love’s Equivalence Principle and has the following simpler boundary conditions 

[Balanis, 1982]: 

 
�

�
1

1

,

.
s

s

= ×

= − ×

J n H

M n E
 (2.2) 

 A further simplification can be made if the medium inside V2 is replaced with a 

perfect electrical conductor (PEC). Unlike Love’s Equivalence Principle where the 

current was free to radiate in an unbounded medium, the current now radiates in the 

presence of an electrical conductor.  Using Image theory on a planar PEC boundary, JS 

cancels out and Ms doubles therefore the boundary conditions become [Balanis, 1982]: 

 �( 1

0,

2 .
s

s )
≅

≅ − ×

J

M n E
 (2.3) 

Equation 2.3 is a good approximation in the far field, but if the radiation characteristics 

are needed in the near field, it is better to use Love’s Equivalence Principle from 

Equation 2.2.  Equation 2.3 will be used in this case since the far field radiation 

characteristics of an IRA are of interest for electronic warfare applications. 

 Equations that describe the far-field radiation characteristics due to surface 

electric and magnetic current densities near a PEC have been developed.  [Balanis, 1982]  

These equations contain the following surface integral whose significance will become 

apparent shortly: 

 '
jkR

SS

e d
R

−

∫∫ M S  (2.4) 

At this point, it seems that the only benefit of using the Field Equivalence 

Principle is that the original complicated source current densities have been replaced by 

different current densities on a different surface.  Even with all of the simplifications 

made, the magnetic surface current density is still needed to find the far field radiation 

characteristics.  The key is in Equation 2.3; for the IRA being studied the electric field at 

the surface, which is also a plane, is a known quantity!  The field is produced by the 

antenna input TEM feed electrodes.  Since the electric field at the surface is known, the  
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Figure 2.2.  (a) Actual sources.  (b) Equivalent source.  (c) Love’s equivalent.  (d) 
Electric conductor equivalent. 

 

magnetic current can be found by Equation 2.3 and consequentially the far-field radiation 

characteristics are found using the equations derived by Balanis. 

2. Radiated Field From a Focused Aperture 

Consider the arbitrary planar aperture S’ shown in Figure 2.3.  The x and y-axis 

are in the same plane as the aperture and the z-axis is perpendicular to the aperture.  The 

convention of using primed variable for sources will be used.  The position vector for a 

point on the aperture is: 

 ( )' ', ', 'x y z=r , (2.5) 

with z’ = 0 in this case.  For a point not on the aperture the position vector is: 
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 ( ), ,x y z=r . (2.6) 

The tangential electric field in the time domain on the surface of the aperture is written 

as: 

 ( )', ';T x y tE , (2.7) 

with t referring to time and the z’ component being left out since it is equal to zero.  

 

Figure 2.3.  Arbitrary source plane used to find radiated electromagnetic fields. 
 

Applying the Field Equivalence Principle, the radiated electric field in the 

frequency domain at some position r is [Baum, 1987]: 

 ( ) ( )( ) l
2'

1 1, ', ';
2

R
rad TS

Rs x y s
R

γ 'e dγ
π

−+ = × ×∫∫E r z E R S� 
 , (2.8) 

with the following terms defined as: 

s ≡ complex frequency,  (2.9) 
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s
c

γ ≡ ≡ free-space propagation constant, (2.10) 

0 0

1c
µ ε

≡ ≡ speed of light,  (2.11) 

( ) ( )2 2 2' ' 'R x x y y z≡ − = − + − +r r and, (2.12) 

l ≡R unit vector in the direction of R.  (2.13) 

Take a close look at the surface integral in Equation 2.8, notice that it is remarkably 

similar to Equation 2.4 in the frequency domain.  The term ( )( )', ';T x y s×z E�  is 

proportional to the surface magnetic current density MS. 

Equation 2.8 is the general equation for the radiated electric field at a given point 

in space from an aperture antenna at z’ = 0.  Using an aperture that focuses the radiated 

electric field along the bore sight of the IRA ( l =R z� ) at a distance of , Equation 

2.8 simplifies to [Baum, 1989]: 

R → ∞

 ( ) ( )
'

, ',
2

R

rad TS

ses x y
cR

γ

π

−

= ∫∫E r E S'; s d '  (2.14) 

Taking the inverse Laplace transformation Equation 2.14 becomes: 

 ( ) ( )'

1, ', ';
2rad TS

d Rt x y t cR dtπ
= ∫∫E r E S 'd− . (2.15) 

Since a focusing aperture is being used, the time characteristics of the transverse field on 

the aperture ET can be written as [Baum, 1989]:  

 ( ) ( ) ( )', '; ', 'T radx y t x y f t=E E . (2.16) 

Equation 2.15 becomes: 

 ( ) ( ) ( )
'

1,
2rad TS

dt f t x y
R dtπ

= ∫∫E r E S', ' d ' , (2.17) 

where f(t) describes the time characteristics of the input electric field on the aperture ET. 

In order to create the impulse like waveforms associated with IRAs, the antennas 

are typically excited with a fast rising step voltage source.  Thus the electric field on the 
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aperture ET is also a fast rising step function in the time sense. This causes Equation 2.17 

to result in a short high magnitude pulse, which is exactly the desired characteristic of an 

IRA being used in electronic warfare applications.  

3. Radiated Field in Terms of Aperture Height 

 Equation 2.17 relates the radiated field along the bore sight of an IRA to the input 

electric field on the aperture of the antenna.  For an IRA with a given optic and feed 

geometry and input impedance the radiated field along the bore Equation 2.17 becomes: 

 ( ) 1,
2rad a

g

dVR t
Rcf dtπ

= −E h , (2.18) 

where V0 is the voltage applied to the feed, fg is a geometric impedance factor defined as: 

 
,

,
g line medium

medium

f Z Z

Z µ ε

=

=
 (2.19) 

and finally the aperture height [Baum et al, 1999]: 

 ( )
0

,g
a TS

f
x y ds

V
= − ∫∫h E . (2.20) 

The aperture height ha is a useful parameter to measure the performance of an 

IRA.  Notice in Equation 2.18 that for a given antenna, the radiated electric field is 

directly proportional to the magnitude of ha.  Therefore if the magnitude of ha is 

increased, so will the magnitude of the radiated field.  From Equation 2.20 ha can be 

increased with out changing the size of the aperture since it is directly proportional to the 

integral of the transverse electric field on the surface of the focusing aperture.  

C. FINDING THE ELECTRIC FIELD ON THE APERTURE SURFACE 

The previous section defined the relationship between the radiated electric field 

and the input electric field on the focusing aperture.  This electric field is created by the 

input TEM feed electrodes.  A good starting point to find this electric field are the source 

free Maxwell’s equations for time-harmonic waves in a linear, isotropic and 

homogeneous medium [Cheng, 1989]: 

 jωµ∇× = −E H  (2.21) 

 jωε∇× =H E  (2.22) 
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 0∇ ⋅ =E  (2.23) 

 0∇ ⋅ =H . (2.24) 

Since the input waves are assumed to be TEM, the electric and magnetic fields 

can be written as the following in spherical coordinates: 

 ( ), jkR
T e

R
θ φ −

=
E

E ’ (2.25) 

 ( ), jkR
T e

R
θ φ

=
H

H . (2.26) 

Note that ET and HT have units of Volts and Amps.  Since E has units of Volts per meter 

and H has units of Amps per meter, we use ET and HT to capture the vector nature of E 

and H. 

Substituting the TEM Equations 2.25 and 2.26 into Equation 2.21 and computing 

the curl in spherical coordinates Equation 2.21 becomes: 

 

l

� �

� �

1 sin
sin

1 1

.

jkR jkR

jkR jkR

jkR

E e E e
R R R

eRE RE
R R R R R R

eH H j

e

R

φ θ

φ

θ φ

θ
θ θ φ

ωµ

− −

− −

    ∂ ∂
−     ∂ ∂     

    ∂ ∂
+ − +    ∂ ∂     

 = + 

R

θ φ

θ φ

θ





 (2.27) 

Which reduces to: 

 

l � �

l � � � �

1 sin
sin

.

jkR jkR
jkR jkR

jkR jkR jkR jkRT

R

E e E e jkE e jkE e
R R

e jkE e jkE e H H j e
R

φ θ
φ θ

φ θ θ φ

θ
θ θ φ

ωµ

− −
− −

− − −

    ∂ ∂
− + −     ∂ ∂     

   = ∇× + − = +    

R θ φ

ER θ φ θ φ

 (2.28) 

From Equation 2.28 it can be seen that the curl of the electric field in the lR  

direction is equal to zero, and therefore: 

 0T

RR
 ∇× 
 

E
= . (2.29) 

This is similar to the mathematical vector identity, 
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 ( ) 0∇ × ∇Φ = , (2.30) 

which states that the curl of a gradient is equal to zero.  In other words, if a vector field is 

curl free then it can be expressed as a gradient of a scalar field.  As in electrostatics, the 

transverse electric field can be written as the gradient of the electric potential: 

 T V
R

= −∇
E . (2.31) 

Equation 2.31 is useful because the electric field on the surface of the aperture can 

now be found if the electric potential on the surface of the aperture is known.  The 

electric potential can be found by solving Poisson’s equation: 

 2V ρ
ε

∇ = − , (2.32) 

which reduces to Laplace’s equation, 

 2 0V∇ = , (2.33) 

because there are no free charges on the aperture [Cheng, 1996].  Equation 2.33 can be 

solved using a number of different methods one being the Finite Element Method 

discussed in Chapter III. 

D. FINDING THE APERTURE HEIGHT 

Earlier the aperture height ha was defined in Equation 2.20 as: 

 ( )
0

, ;g
a TS

f
x y t ds

V
= − ∫∫h E . 

This surface integral can be rather difficult to solve depending on the geometry of the 

aperture.  In order to compute a solution to this equation, the electric field is written as 

the gradient of a complex potential and cast into Green’s theorem, witch results in a 

rather simple contour integral. 
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Figure 2.4.  Two-dimensional view of an IRA. 

 

 Assume the feed electrodes of the IRA in Figure 2.4 are perfect electric 

conductors and have an electric potential V0 between them.  Also assume that there is no 

net charge on the two conductors.  Essentially this is a two dimensional view of a 

transmission line and the voltage distribution on the plane of the aperture can be found by 

solving Laplace’s Equation 2.33.  

1. Stereographic Projection 

The electric field on the surface of the aperture in Figure 2.4 is assumed to be 

created by a parallel feed electrode TEM transmission line.  However, actual IRAs are 

usually excited by conical TEM transmission lines not parallel plate electrodes.  So the 

resulting electric field has to be modified by a stereographic projection in order to 

produce accurate results. [Yang, 1977] 
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Figure 2.5.  A 3-dimensionsl view of the stereographic projection. [From: Yang, 1977] 

 

The stereographic projection, shown in Figure 2.5 will map points on the sphere 

to a corresponding point on the surface of the plane.  A point described by ( ),θ φ  or 

( , , )x y z′′ ′′ ′′  on the surface of the sphere will be mapped to point ( ),x y′ ′  on the plane.  

Figure 2.6 shows the stereographic projection of a flat plate set of conical TEM feed 

electrodes. 
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Figure 2.6.  Stereographic projection of conical TEM feed electrodes. [After: Farr and 
Baum, 1992a] 

 

Once the stereographic projection is carried out, the electric field on the surface of the 

aperture can be determined using the assumption of infinite length parallel plate 

electrodes. 

2. Electric Field as the Gradient of a Complex Potential 

The electric field on the surface of the aperture can be written as: 

 ( ) � � � �, x
V Vx y V
x y y

∂ ∂
= −∇ = − − = +

∂ ∂
E x y E x E y . (2.34) 

Introducing the complex coordinate ζ, 

 x jyζ = + , (2.35) 

and writing Equation 2.34 in terms of ζ the electric field is [Farr and Baum, 1995]: 

 ( ) ( ) ( ) ( ), c x yx y E E jEζ ζ= = −E ζ . (2.36) 

For a TEM mode wave propagating in the z-direction the analytic complex 

potential w is defined as: 

 ( ) ( ) ( )w u jvζ ζ= + ζ , (2.37) 
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where u(ζ) is proportional the electric potential, v(ζ) is proportional to the magnetic 

potential and both are real analytic functions.  Since u(ζ) is proportional to the electric 

potential it can be written as: 

 ( ) ( )0,
V

V x y u
u

ζ=
∆

, (2.38) 

where ∆u is the change in the electric potential parameter u between the two conductors 

in Figure 2.4.  The electric field can now be written as: 

 ( ) ( ) ( ) 0
c x y

V u uE E jE j
u x y

ζ ζ ζ
 ∂ ∂

= − = − − ∆ ∂ ∂ 
. (2.39) 

Applying the Cauchy-Riemann relationships [Brown and Churchill, 1996],  

 ,u v u v
x y y x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
’ (2.40) 

Equation 2.39 can be written as: 

 ( ) 0
c

V u vE j
u x x u

ζ 0V w
ζ

∂ ∂ ∂ = − + = − ∆ ∂ ∂ ∆ ∂ 
. (2.41) 

Other forms of Equation 2.41 using the Cauchy-Riemann Relationships are: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0 .

c

u v u vV VE j
u u x

u u v vV Vj j
u x y u y x

j
x

ζ ζ ζ
ζ

ζ ζ

ζ ζ ζ ζ

∂ ∂ ∂ ∂   
= − + = − +   ∆ ∂ ∂ ∆ ∂ ∂  

∂ ∂ ∂ ∂  
= − − = − +  ∆ ∂ ∂ ∆ ∂ ∂  

ζ






 (2.42) 

 

3. Writing the Surface Integral as a Contour Integral 

Now that the electric field can be written as the gradient of a complex potential, 

the surface integral in Equation 2.20 can be written as: 

 ( ) ( ) ( ) ( )0,T cS S S

u uVx y ds E dxdy j dxdy
u x y

ζ ζ
ζ

∂ ∂ 
= = − −∆ ∂ ∂ 

∫∫ ∫∫ ∫∫E  . (2.43) 

Rewriting Equation 2.43 as follows: 
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 ( ) ( )0
S S

u uV dxdy j dxdy
u x y

ζ ζ∂ ∂ 
− + −∆ ∂ ∂ 

∫∫ ∫∫   (2.44) 

and applying the following form of Green’s Theorem to the integrals in Equation 2.44 

[Brown and Churchill, 1996]: 

 x yS C
Q P dxdy Pdx Qdy − = + ∫∫ ∫v , (2.45) 

the following result is obtained: 

 ( ) 0
cS C

VE ds udy j udx
u

ζ
C

 = − + ∆∫∫ ∫ ∫v v . (2.46) 

Substituting this result into Equation 2.20 the aperture height can be written as: 

 � �0

0

g
a C C

f V udy udx
V u

  = − − +  ∆ ∫ ∫h x yv v . (2.47) 

The geometric impedance fg is equal to ∆u/∆v [Farr and Baum, 1995] so Equation 2.47 

becomes: 

 � �1
a C C

udy udx
v

 = + ∆ ∫ ∫h x yv v . (2.48) 

It has been shown that for the specific TEM feed geometry being studied, the x-

component of the electric field on the aperture cancels out due to symmetry. [Baum, 

1991]  Because of this, the aperture height and resulting radiated electric field depends 

only on the y-component of the electric field.  So Equation 2.20 reduces to: 

 ( )
0

, ;g
a yS

f
h E x y

V
= − ∫∫ t ds , (2.49) 

and Equation 2.48 reduces to: 

 ( )1 ,a C
h u x

v
= ∫+

y dxv  (2.50) 

Equation 2.50 reduces the problem of determining the radiated electric field of an 

IRA to a simple contour integral.  The contour integrated over is the boundary of the 

focusing aperture.  In order to change the shape of the aperture all that needs to be done is 

change the contour that is integrated over.  In order to optimize the radiated electric field, 
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this contour would only enclose portions of the aperture that has the y-component of the 

electric field orientated in the correct direction to contribute constructively to the radiated 

electric field.  
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III. FINDING THE IDEAL APERTURE SHAPE 
Equation Section 3 
 

A. OVERVIEW 

All of the electric field on an ideally shaped aperture will contribute 

constructively to the radiated electric field.  In practice however, IRAs are typically made 

with circular cross section apertures with no consideration given to the orientation of the 

aperture electric field.  To make the ideal aperture shape, the portions of the aperture that 

detract from the radiated field need to be found and removed. 

Recall from Equation 2.15 that the radiated field along the bore sight of an IRA is 

proportional to the surface integral of the transverse electric field on the aperture of the 

antenna.  For symmetrical TEM feeds, only portions of the aperture that have the y-

component of the electric field less than zero will contribute constructively to the radiated 

electric field. [Baum, 1991]  Therefore all that needs to be done is to remove the portions 

of the aperture that has a positive electric field y-component! 

In order to accomplish this, the electric potential distribution on the aperture is 

found using the finite element method and a symmetry operator called reciprocation.  

Once the electric potential distribution is known, then the electric field can be found by 

taking a simple gradient of the electric potential distribution.  Now that the electric field 

is known, a line is drawn where the y-component of the electric field is equal to zero.  

This boundary is called the ideal contour.  The ideal aperture will contain the areas where 

the y-component of the electric field is negative and its boundary will be the ideal 

contour. 

B. PROBLEM GEOMETRY 

Figure 3.1a is a schematic diagram of the IRA being studied.  The reflector is 

assumed to be paraboloidal with a focal length f and diameter D.  The TEM feed consists 

of a pair crossed coplanar electrodes orientated clockwise at an angle of θo from the y-

axis.  The electrodes originate at the focal point of the paraboloidal and intersect the 

circle of symmetry.  The circle of symmetry radius is denoted by a.  The input impedance 

of the electrodes determines the values of b1 and b2.  Once f, D, θo, and input impedance 

are specified the values of β0, β1, β2, and a are as follows: 
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( ) ( )

1 1n
2 / / 80 ta

f D D f
−β

 
=  − 

, (3.1) 

 1
1 1 22 tan / tan( / 2)b bβ −

0β =   , (3.2) 

 ( )1
2 2 1 12 tan / tan / 2b bβ −= β   . (3.3) 

Recall from Chapter II that in order to calculate the aperture electric field, the 

TEM electrode geometry has to undergo a stereographic projection.  Equations 3.4, 3.5, 

and 3.6 describe the antenna geometry after stereographic projection: 

 1 1tan( / 2)b β= , (3.4) 

 2 2tan( / 2)b β= , (3.5) 

 1 2a b b= . (3.6) 

Figure 3.1b is a view of the IRA geometry after stereographic projection. 

 

Figure 3.1.  (a) Side view of the IRA being studied.  (b) Front view of the IRA after 
stereographic projection. 

 

26 

(a) (b) 



1. Self-reciprocal Symmetry 

To simplify calculations associated with many IRAs a two dimensional symmetry 

operator called reciprocation has been developed.  [Farr and Baum, 1995] The 

reciprocation operator replaces a point in the original geometry with its reciprocal 

complex conjugate times a constant.  For example a point described by the polar 

coordinates (r,θ) has the reciprocal point (b2/r, θ).  When using reciprocation, the original 

geometry is described as a complex number in Cartesian (x,y) or  polar (Ψ,θ) coordinates: 

 jx jy e θζ = + = Ψ . (3.7) 

After reciprocation all points ζ are mapped to new points ζ2.  This is similar to 

reflecting an object through a circle centered at the origin of radius b, typically called the 

circle of symmetry.  The new point is positioned at the same angle θ from the x-axis at a 

distance  from the origin.  Equations 3.8 and 3.9 describe the reciprocation 

mapping.  Points inside the circle of symmetry are mapped outside and points outside are 

mapped inside. 

2 /b Ψ

 
2

2 *
2 2 2

2 2

/ ,
j

x jy b

e θ

ζ ζ

ζ

= + =

= Ψ
 (3.8) 

 

2
2

2
2

2
2

2

/ ,
/ ,
/ ,

x b x
y b y

b
θ θ

=

=

Ψ = Ψ
=

 (3.9) 

Figure 3.2 gives some examples of how various shapes are transformed by 

reciprocation.  Straight lines are transformed into circles passing through the origin, 

circles passing through the origin transform to straight lines.  Circles that do not pass 

through the origin transform to other circles, straight lines passing through the origin 

transform onto themselves.   
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Figure 3.2.  Some examples of two-dimensional structures and their reciprocals. 
 

A structure that does not change after applying the reciprocation operator, such as 

the black circle at the bottom of Figure 3.2, is called a self-reciprocal structure.  Some 

more examples of self-reciprocal structures are shown in Figure 3.3.  Notice that the 

structure on right is the same as the feed structure of IRA being studied.  Suppose that the 

shapes in Figure 3.3 are perfect electrical conductors with a potential difference between 

them.  This is now a two-dimensional cross-section of a TEM feed and the static electric 

field between the conductors can be found by solving Laplace’s equation as discussed in 

Chapter II. 

To take advantage of self-reciprocal symmetry the potential is written in the 

complex plane as, 

 ( ) ( ) ( )w u jvζ ζ= + ζ , (3.10) 

where u is the electric potential and v is the magnetic potential.  In a self-reciprocal IRA, 

the structure of the electrodes does not change after reciprocation, so the potential at a 
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Figure 3.3.  Some examples of self-reciprocal apertures.  The structure on the right is the 
same as the IRA being studied in this paper. 

 

point ζ is the same before and after the reciprocation. Written mathematically this is 

simply [Farr and Baum, 1995]: 

 ( ) ( )2w wζ ζ= . (3.11) 

This can also be expressed as the following, where v0 is a real constant that is typically 

equal to zero [Farr and Baum, 1995]: 

 
( ) ( )
( ) ( )
( ) ( )

*
2 0

2

2 0

,

,

.

w w j

u u

v v j

ζ ζ

ζ ζ

ζ ζ

= +

=

= − +

v

v

 (3.12) 

The most significant result of Equation 3.12 is that the electric potential at any 

point ζ is equal to the electric potential at the reciprocal point ζ2.  Recall from Equation 

2.39 that the normalized electric field can be written as: 

 ( ) ( ) ( )x y
uE E jE j u
x y

ζ ζ ζ ∂ ∂
= − = − +

∂ ∂
. (3.13) 

Applying the relationships in Equation 3.12 the electric field at ζ2 is equal to [Farr 

and Baum, 1995]: 

 ( ) ( )
*2

*
2 2E E

b
ζζ ζ= − . (3.14) 
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2. Symmetry and Boundary Conditions 

Due to symmetry considerations, only one quarter of the antenna is needed to find 

the radiated electric field.  Since MATLAB PDE Toolbox Finite Element Method is used 

to compute the voltage distribution resulting from the TEM feed, this dramatically 

reduces the amount of computations that need to be accomplished.  Figure 3.4 gives a 

qualitative view of how symmetry reduces the size of the finite element mesh needed. 

  

Figure 3.4.  Taking symmetry into consideration reduces the amount of finite element 
triangles needed for reasonably accurate results from 68,240 to 8,530. 

 

The electric potential on the TEM feed electrodes in the lower half of the IRA is 

equal to the negative of the electric potential of the electrodes in the upper half.  This 

causes the IRA to be symmetric about the x-axis.  Therefore, the x-axis can be treated as 
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a perfect electrical conductor where the tangential electric field and electric potential on 

the axis are both zero.  The IRA is also symmetric about the y-axis because the electric 

potential on the TEM feed electrodes to the right of the y-axis is equal to the electric 

potential on the electrodes to the left.  This allows the y-axis to be treated as a perfect 

magnetic conductor where the normal electric field is zero. 

The circle of symmetry is a self-reciprocation boundary and is treated as a perfect 

magnetic conductor where the normal electric field is zero.  This can be explained by  

Equations 3.8 and 3.9 where a point ζ that is at an infinitesimally small distance 

inside the circle of symmetry will map to a point ζ2 that is at an infinitesimally small 

distance outside the circle of symmetry at the same angle θ from the x-axis. Equation 

3.12 shows that the electric potential at these two points is equal.  Thus, the electric field 

between points ζ and ζ2, shown in Figure 3.5, can be written as:   

 ( ) ( )
0

2 2
0lim normal

r

u r r u r r du E
r dr∆ →

+ ∆ − − ∆
= =

∆
= . (3.15) 

  Because of this self-reciprocation boundary the electric potential and electric 

field need only be computed inside the circle of symmetry.  The electric field and 

potential outside is easily found using Equations 3.12 and 3.14. 

 

Figure 3.5.  Illustration of why the electric field normal to the circle of symmetry is zero. 
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C. COMPUTING ELECTRIC POTENTIAL DISTRIBUTION 

1. Aperture Voltage Distribution Using FEM 

In the feed arm angle optimization study [Tyo, 1999] the electric potential 

distributions for 1,056 feed arm angle and size combinations were computed by the finite 

element method using MATLAB’s PDE Toolbox.  The electrode angles ranged from 3˚ 

to 87˚ measured clockwise from the y-axis.  The electrode size is specified by the value 

for b1 in Figure 3.1.  The parameter b2 is easily found using self-reciprocation symmetry.  

The values of b1/b range from 0.2 to 0.97 units of length.  The circle of symmetry radius 

and aperture boundary radius b are both equal to 1 unit of length.  Figure 3.6 is the 

geometry and finite element mesh of one of these configurations.  This is the 45-degree 

case with an electrode size b1/b of 0.6424 units.  The electrode is oriented straight up to 

simplify the MATLAB code used to create the boundaries. 

 

Figure 3.6.  Finite Element mesh used to find the voltage distribution. 

 

In order to make the problem more intuitive, the geometry is rotated so that the 

right boundary in Figure 3.6 lies on the x-axis and the left boundary lies on the y-axis.  
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This is accomplished by multiplying the PDE Toolbox point matrix by the simple linear 

algebra rotation matrix,  

 0

0 0

cos( ) sin( )
cos( ) sin( )

0θ θ
θ θ

− − − 
 − − 

, (3.16) 

and the resulting figure is shown in Figure 3.7.  The solution computed by MATLAB’s 

PDE toolbox is still valid because the finite element mesh and it’s associated boundary 

conditions remain unchanged, the only thing changed by the rotation matrix is its position 

relative to the x and y coordinate axes. 

 

Figure 3.7.  Finite element mesh after rotation. 

 

The voltage distribution is computed at each point in the mesh by solving 

Laplace’s equation ∇  with the boundary conditions contained in the symmetry 

discussion above. 

2 0V =
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Since the IRA TEM feed has self-reciprocal symmetry, the electric potential 

distribution outside the circle of symmetry can be found by performing a simple 

transformation similar to conformal mapping [Farr and Baum, 1995].  The mesh is 

mapped outside the geometry by applying the reciprocation operators in Equations 3.8 

and 3.9 on the MATLAB finite element mesh.  Figure 3.8 shows the newly mapped 

mesh.  The electric potential is now known at every point in the mesh. Figure 3.9 is a 

contour plot of the IRA’s voltage distribution. 

 

Figure 3.8.  Finite element mesh outside the circle of symmetry created using self-
reciprocation relationships   
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Figure 3.9.  Contours of constant electric potential due to TEM feed electrode.  The 
contours inside the circle of symmetry were calculated using finite element methods.  The 
contours outside the circle of symmetry were found by self-reciprocation. 

 

2. Contents of Data Files 

Each of the data files contains the electric potential distribution stored in 10 

different MATLAB variables.  These variables contain the information in the following 

manner:  (xx and yy identify the electrode angle/size combination) 

• bs – the value in meters of b1 which is the distance from the origin to the inner 
tip of the electrode in the aperture plane. 

• e_xx_yy – this is the PDE toolbox “edge matrix.”  This variable identifies the 
points that lie on the boundary of the mesh used in the FEM analysis.  Each 
column of this matrix represents one segment of the boundary edge.  The first 
and second columns contain the point indices (columns of the point matrix) of 
the starting and ending point of that particular segment.  The third and fourth 
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columns contain the voltage values at the starting and ending points.  This 
fifth through seventh row contain information that identifies which boundary 
the line segment is on. 

• fg_xx_yy – this is the geometric impedance of the electrode configuration.  To 
find the impedance multiply fg by 377.  

 0

0
120 377g g gZ f fµ πε= = ≈ f  (3.17) 

• p_xx_yy – PDE toolbox “point matrix.” Each column in this matrix represents 
one point in the finite element mesh. The first row is the x-coordinate and the 
second row is the y-coordinate. 

• t_xx_yy – PDE toolbox “triangle matrix.” The first three rows contain indices 
to the corner points (columns in the point matrix), given in counter clockwise 
order of each triangle in the mesh. 

• theta – angle of the electrode θo 

• u_xx_yy – Solution to Laplace’s equation, it is the electric potential at every 
point in the mesh.  Each column corresponds to the corresponding point index. 

The electrode size and angle coefficients are shown in Table 3.1.  The position of 

the start of the electrode can be found with the following equation: 

 2
1start b e

π θ−= . (3.18) 

The angle θ is measured clockwise from the vertical, b1 is the value from Equation 3.4, 

and the electrode length is the length of the self-reciprocal electrode. 
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xx, yy Electrode angle xx, yy Electrode angle
Coeff b1 Length theta Coeff b1 Length theta

1 0.020 49.980 87.000 19 0.610 1.029 34.862
2 0.053 18.815 84.103 20 0.642 0.916 31.966
3 0.086 11.542 81.207 21 0.675 0.807 29.069
4 0.118 8.357 78.310 22 0.708 0.704 26.172
5 0.151 6.472 75.414 23 0.741 0.609 23.276
6 0.184 5.251 72.517 24 0.773 0.521 20.379
7 0.217 4.391 69.621 25 0.806 0.435 17.483
8 0.249 3.767 66.724 26 0.839 0.353 14.586
9 0.282 3.264 63.828 27 0.872 0.275 11.690

10 0.315 2.860 60.931 28 0.904 0.202 8.793
11 0.348 2.526 58.034 29 0.937 0.130 5.897
12 0.380 2.252 55.138 30 0.970 0.061 3.000
13 0.413 2.008 52.241 31 45.000
14 0.446 1.796 49.345 32 75.000
15 0.479 1.609 46.448 33 60.000
16 0.511 1.446 43.552 34 30.000
17 0.544 1.294 40.655 35 15.000
18 0.577 1.156 37.759  

Table 3.1.  Parameter values for different IRA configurations 
 
3. Two-dimensional Aperture Voltage Distribution Using Gauss’s law 

In the previous section the electric potential was found at every point in the mesh.  

However, to evaluate Equation 2.50 along the ideal contour it is necessary to know the 

electric potential at points not located on the matrix.  This could be done by interpolation 

from the known points in the mesh.  This is an extremely difficult task given the format 

of the MATLAB PDE toolbox output.  However, it is relatively easy to find the electric 

charge on the electrodes using the PDE toolbox output.  This allows the use of Gauss’ 

Law to find the electric potential distribution.  Gauss’s Law states that the total outward 

flux of the electric field over any closed surface in free space is equal to the total charge 

enclosed by the surface divided by the electrical permittivity (ε0) [Cheng, 1989]:  

 
0

enc
S

Qd
ε

=∫ E siv . (3.19) 
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Figure 3.10.  Infinite length line charge surrounded by surface S. 
 

Suppose the electric field E is due to a line of charge of length L with a charge 

density of ρl, as in Figure 3.10.  Enclosing the line charge with surface S and using 

cylindrical coordinates the electric field magnitude, ( )E r  at a radial distance r can be 

written as: 

 ( )
0

2 l LE r L ρπ
ε

=r - r' , (3.20) 

where the primed vectors refer to the source objects.  Canceling out the length L, 

rearranging and writing in vector form, Equation 3.21 gives us the electric field due to a 

line charge of finite length: 

 l
2

l

or
ρ

πε
=E R , (3.21) 

with lR defined as: 

 l

',

' .
R

R

= −

=

= = −

R r r
RR

R r r

 (3.22) 

The electric potential V between points b and a is written as: 
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 ( ) ( )
b

a
V b V a d− = −∫ E li  (3.23) 

Substituting Equation 3.21 for E and the cylindrical coordinate representation  for dl 

into Equation 3.23 results: 

ldrR

 ( ) ( ) l l
2

b l
a

o

V b V a dr
r

ρ
πε

− = −∫ R Ri  (3.24) 

Carrying out the dot product and solving the integral: 

 ( ) ( ) ( ) ( )
0 0

1 ln ln
2 2

bl l
a

V b V a dr b a
r

ρ ρ
πε πε

− = − = − −  ∫  (3.25) 

 

Figure 3.11.  Gauss’ Law is being used to find the electric potential at point R due to the 
four electrodes.  Each electrode is treated as an infinite plate coming out and going into 
the page that is broken up into an infinite amount of line charges.  The vector r’ points to 
one of the infinite length line charges. 

 

In Figure 3.11 r identifies the point R where the electric potential needs to be 

determined.  The vector r’ identifies the location of the charge.  The electric potential at 
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R with respect to ∞ is VR.  Using Equation 3.25 to find the electric potential results in the 

following:   

 ( ) ( ) ( ) ( )
'

0 0

1' l
2 2

l lV R V dr
r

n ' lnρ ρ
πε πε

−

∞
 = − − ∞ = − = − − − ∞ ∫

r r
r r r r . (3.26) 

This equation blows up because of the ln(∞) term.  To get around this, we write the 

electric potential at the origin (which we know is zero for the IRA because of symmetry) 

with respect to the electric potential at R=∞ as: 

 ( ) ( ) ( ) ( )
'

0 0

1'
2 2

l lV V dr
r

ln ' lnρ ρ
πε πε∞

− −  − ∞ = = − ∞ ∫
r

r r . (3.27) 

The electric potential at R referenced to the electric potential at the origin is:  

 
( ) ( ) ( ) ( )

( ) ( )

0
0

0

ln | ' | ln ln | ' | ln ,
2

ln ' ln | ' | .
2

l
R

l

V V V

V

ρ
πε

ρ
πε

−
= − = − − ∞ − + ∞  

−  = − − 

r r r

r r r
 (3.28) 

When taking all four electrodes in Figure 3.11 into account Equation 3.28 becomes for 

one ‘piece’ of the electrode (and its counterparts in the other three electrodes) is: 

 

( ) ( ) ( ) ( )1 2 3
0

1 2

0 3 4

ln | ' | ln | ' | ln | ' | ln | ' | ,
2

| ' || ' |ln .
2 | ' || ' |

l

l

V

V

4
ρ

πε

ρ
πε

−
= − + − − − − −  

  − − −
=   − −  

r r r r r r r r

r r r r
r r r r

 (3.29) 

Writing Equation 3.29 in terms of x and y coordinates: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2 2
1 1 2 2

2 2 2
0 3 3 4 4

2 2 2 2
1 1 2 2

2 2 2 2
0 3 3 4 4

' ' ' '
ln ,

2 ' ' ' '

' ' ' '
ln .

4 ' ' ' '

l

l

x x y y x x y y
V

x x y y x x y y

x x y y x x y y
V

x x y y x x y y

ρ
πε

ρ
πε

  − + − − + −−   =
  − + − − + −   
  − + − − + −−   =    − + − − + −   

2

2

 (3.30) 

The line charge density ρl in Equation 3.30 was found using the results of the 

MATLAB finite element method.  Figure 3.12 is a portion of one of the electrodes 

showing the FEM triangles bordering it.  The electric field E is known via the finite 

40 



element solution at the centers of the triangles.  By Gauss’s law the surface charge 

density in each triangle is equal to: 

 0Sρ ε= E . (3.31) 

 

Figure 3.12.  Close up view of the finite element mesh along on of the electrodes.  Each 
segment of the electrode is being approximated by an infinite line charge coming out of 
the page, located at the center of the electrode. 

 

Equation 3.30 can be solved numerically if it is written in the following form: 
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∑
2

2
,(3.32) 

where n is the number of electrode “segments” shown in Figure 3.12, qn is the charge on 

each segment, ∆sn is the length  of each segment and (xn’, yn’) is the position of the center 

of each electrode segment. 

3. Comparing FEM Distribution to Gauss’s Law 

The FEM and Gauss’s Law solutions discussed above are intimately related 

through the charge on the electrodes.  It is useful to compare the two to help determine 

the amount of error that the two solutions may contribute.  Notice in Figure 3.13 that the 

maximum difference between the two is about 1.3%. 
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Figure 3.13.  Plot of the percent difference between the electric potential distribution 
calculated by the finite element method and the by Gauss’ Law.  The white areas at the 
bottom are caused by divide by zero errors.  The electric potential along the x-axis is 
zero, so the electric potential in the triangles bordering the x-axis is also zero. 
 

D. FINDING THE IDEAL CONTOUR 

Now that the electric potential distribution is known, the electric field can be 

easily computed by taking the gradient of the distribution: 

 V= −∇E  (3.33) 

MATLAB’s PDE Toolbox has a built in function, pdegrad, which can compute the 

gradient of a finite element mesh.  Figure 3.14 shows the electric field lines for one IRA 

electrode size and angle combination. 
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Figure 3.14.  IRA showing electric field lines in blue and the ideal contour in black and 
the circle of symmetry in red. 

 

Once the electric field is known, it is a trivial matter to find out the areas where Ey 

is orientated in the wrong direction.  The bold line in Figure 3.14 is where Ey = 0 and is 

referred to as the ideal contour, as Ey is orientated in the wrong direction above the ideal 

contour and Ey in the correct direction below.  This line was plotted using the MATLAB 

command pdecont.  Each electrode size and angle combination will produce a slightly 

different ideal contour similar in shape to the one in Figure 3.14 as can be seen in Figure 

3.15. 
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Figure 3.15.  Some examples of Ideal Contours for different electrode size and angle 
combinations.  The entire area below the ideal contour contains aperture electric field that 
will contribute constructively to the radiated electric field. 
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IV. DETERMINEING THE OPTIMUM CIRCULAR APERTURE 
Equation Section 4 
 

A. OVERVIEW 

In Chapter III the ideal contour was found for a given TEM feed size and angle 

configuration.  For most IRA applications, the aperture size is fixed and normally has the 

same outer dimensions as the circle of symmetry.  The maximum possible radiated field 

from a given aperture and electrode configuration will result by projecting the ideal 

contour onto the aperture and eliminating the parts of the aperture outside the ideal 

contour.  For a given aperture size, the response can be improved by optimizing the 

position of the circle of symmetry relative to the maximum aperture size while forcing 

the aperture boundary to follow the ideal contour.  Figure 4.1 shows a number of 

different ideal aperture shapes relative to the circle of symmetry. [Baretela and Tyo, 

2001] 

The aperture height ha is a useful tool to find the optimum position of the circle of 

symmetry relative to the aperture boundary.  A high magnitude for ha is desired since it is 

proportional to the prompt radiated electric field.  In this chapter, the aperture height is 

numerically computed for a number of electrode size and angle configurations, 

 

B. CALCULATE THE APERTURE HEIGHT 

In Chapter II it was shown that the aperture height, ha, is proportional to the 

radiated electric field.  Recall from Equation 2.50 that ha is equal to the contour integral 

along the boundary of the aperture C of the electric potential u: 

 ( )1 ,a C
h u x

v
= ∫+

y dxv , 

where + is the magnetic potential discussed in Chapter II and is equal to the total charge 

on the positive electrodes. 

v
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Figure 4.1.  There are four possible relationships between the circle of symmetry C and 
the maximum radius R: a) R inside C and inside the inner edge of the electrode, b) R 
inside C and intersecting the electrode, c) R outside C and intersecting the electrode, d) R 
outside the electrode. [From: Baretela and Tyo, 2001] 

 

1. Numerically Computing the Aperture Height ha 

As an example, ha is calculated for the circular aperture in Figure 4.2.  This is a 

good example because it shows how the integral is computed for all possible locations of 

the ideal boundary.  There is (1) a portion along the circle of symmetry, (2) a portion 

along the ideal contour inside the circle of symmetry, (3) a portion along the electrode, 

(4) a portion along the ideal contour outside the circle of symmetry and (5) a portion 

outside the circle of symmetry that does not follow the ideal contour. 
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Figure 4.2.  Circular shaped aperture that follows the ideal contour with and outer radius 
larger than the circle of symmetry. 

 

Along the x-axis (6) the contribution to ha is zero because the electric potential u 

is zero.  On the y-axis (7), the contribution to ha is zero because dx is zero on the y-axis.  

Along the electrode (3) the electric potential u is equal to one volt, therefore the 

contribution to ha is equal to the length of the electrode lelectrode projected onto the x-axis 

divided by + : v
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where θ0 is measured as in Figure 3.1. 
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It is more complicated to calculate ha for the other segments (1,2,4,5) on the ideal 

contour because the electric potential u(x) is not easily found.  These segments do not 

have simple boundary conditions as (6,7) or lie on points included in the finite element 

mesh that was used to compute the electric potential.  Additionally, segments (1,5) are 

arcs of a circle, while segments (2,4) are complicated contours without a known analytic 

description. 

Figure 4.3 describes how segment (2)’s contribution to ha was calculated using 

the approximation in Equation 4.2: 

 ( )2
1

1 m

a
n

h u n
v =

nx≈ ∆∑+
. (4.2) 

Recall from Chapter III that the ideal contour was found using the MATLAB command 

pdecont.  In addition to drawing a line where Ey = 0, pdecont divides this line into m 

pieces identified by starting and ending x and y coordinates.  The electric potential at the 

start and end of each piece is found using Equation 3.30.   The electric potential u(n) for 

each piece is then approximated by averaging the start and end electric potential values.  

The length of each piece in the x-direction ∆xn is found by subtracting the x-coordinate of 

the starting point from the x-coordinate of the ending point.  Note that ∆xn could take on 

a positive or negative value. This same method is used to solve for the contribution from 

segment (4). 

The remaining two segments (1) and (5) in Figure 4.2 are arcs of circles centered 

at the origin.  Segment (1) lies on the circle of symmetry starting at the y-axis and ending 

at the beginning of segment (2).  Segment (5) begins at the end of segment (4) and ends 
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Figure 4.3.  This is an enlarged view of the portions of the ideal contour calculated by 
the MATLAB pdecont command.  The ideal contour is divided into m segments 
identified by starting and ending x-y coordinates. The contribution to ha is found by 
summing the average electric potential of each piece multiplied by the length of each 
piece in the x-direction. 

 

at the x-axis.  The radius of the arc for segment (5) is a constant specified by the overall 

size desired for the IRA.  Figure 4.4 describes how ha is calculated for segment (1) using 

the approximation in Equation 4.3. 

 ( )
100

1
1

1
a

n
h u

v =

n x≈ ∆∑+
 (4.3) 

The segment is divided into 100 equal sized pieces and ∆xn is length of each piece 

projected onto the x-axis.  One hundred pieces was chosen so that there would be a small 

enough ∆xn to obtain accurate results, while keeping the number of computations needed 

low.  The electric potential u(n) for each piece is found in the same manner as was used 

for segments (2) and (4).  Equation 4.3 is also used to find the contribution to the aperture 

height from segment (5). 
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Figure 4.4.  This is an enlarged view of the portions of the ideal contour where the 
geometry is easily identified.  The ideal contour is divided into 100 equally sized pieces. 
The contribution to ha is found by summing the average electric potential of each piece 
multiplied by the length of each piece in the x-direction. 

 

The value of ha for the contour in Figure 4.2 is found by adding the contributions 

to ha for each segment: 

  (4.4) ( 1 2 3 4 5 6 74a a a a a a a ah h h h h h h h= + + + + + + )

The sum is multiplied by 4 because the value of ha was computed for only one quarter of 

the antenna due to symmetry considerations. 

2. Comparing Numerical Value of ha to an Analytic Form Solution 

The Analytic solution to Equation 2.50 for a TEM feed arm angle θ0 = 45˚ is 

[Farr, 1993]: 
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K is a complete elliptic integral of the first kind with parameter m is given as: 
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where b1 and b2 define the electrode size and can be found in Equations 3.4 and 3.5.  

Analytic solutions for θ0 other than 45˚ have not been found.  

 

Figure 4.5.  Comparison of analytic solution for ha to the numerically computed one.  
The Analytic solution is for the θ0 = 45˚ case.  The aperture height is normalized by the 
radius of the circle of symmetry. 

 

As seen in Figure 4.5, the value of ha computed using Equation 4.4 follows the 

analytical solution calculated with Equation 4.5 for the θ0 = 45˚ case.  The mean deviation 

is 0.19% with a maximum deviation of 0.69%.  This result provides a level of confidence 

to the numerical ha calculations for other TEM feed arm angles. 

C. CALCULATED RESULTS 

The location of the ideal contour was computed for most of the cases in Table 3.1.  

The ideal contour was not found for all of the cases because for b1 coefficients of less 

than 6 or 7, the resulting self-reciprocal electrode size is too wide to be practical for most 

applications.  Also, the numerical computation method to find the ideal contour 

occasionally becomes unreliable at electrode angles less than 15˚. 
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1. Aperture Height ha 

The aperture height was computed for circular aperture shapes that have been 

trimmed to conform to the shape of the ideal contour.  For each electrode angle and size 

configuration, ha was found for a range of aperture radii corresponding to the different 

aperture sizes relative to the circle of symmetry shown in Figure 4.1.  The aperture height 

vs. aperture radius for a number of different electrode angles and sizes corresponding to a 

200 Ω input impedance is shown in Figure 4.6.  The 200 Ω case is used in this discussion 

because that is the input impedance most commonly used in high power applications. 

 
Figure 4.6.  Plot of aperture height vs. the radius of the reflector boundary.  Five 
different electrode angles with electrode sizes corresponding to a TEM input impedance 
of 200 Ω.  The dashed lines represent a circular aperture that does not follow the ideal 
contour. 
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Notice in Figure 4.6 that ha increases as the size of the ideal aperture increases.  

This is due to the fact that the larger aperture is focusing more constructively contributing 

input electric field, resulting in a larger magnitude radiated field.  Also it can be seen that 

there is a maximum curve for ha somewhere between 15˚ and 30˚.  The inflection point to 

the left of the circle of symmetry corresponds to the beginning of the electrode.  The 

roughness of the curves at larger radii is due to the coarseness of the finite element mesh 

used to compute the ideal contour. 

The dashed lines in Figure 4.6 are due to standard circular apertures that do not 

follow the ideal contour.  The standard circular aperture encompasses both constructively 

and destructively contributing input electric fields.  Notice that the standard aperture 

closely follows the ideal aperture and then at a point larger than the circle of symmetry, 

the standard aperture levels off while the ideal aperture continues to increase.  This is 

reasonable at radii smaller than the circle of symmetry because the area of “bad” electric 

field being eliminated by the ideal aperture is relatively small.  Refer to Figure 3.15 to 

help visualize this.  As the size of the aperture is increased at radii greater than the circle 

of symmetry the amount of  “bad” electric field being eliminated by the ideal aperture 

becomes more and more significant.  The leveling off of the standard case occurs at the 

outer tip of the electrode and is also reasonable because at large radii, the ideal contour 

essentially splits the increased aperture area between “good” and “bad” electric field into 

two equal halves. 

2. Normalized Values for Aperture Height 

From Figure 4.6 it appears that ha will increase with a larger ideal aperture, 

because a larger aperture will focus a larger portion of the input field. Typically the size 

of the aperture is specified by physical constraints, such as there may only by one square 

meter available for an antenna.  The position of the circle of symmetry is determined by 

the size of the TEM electrodes.  The larger the electrodes, the larger the radius of the 

circle of symmetry will be.  Therefore by changing the size of the circle of symmetry 

compared to the size of the aperture will change how much of the total aperture area will 

contribute constructively to the radiated electric field.  The question is whether for a 

given aperture size, and impedance, can the radiated electric field be made larger by 

making the input TEM electrodes smaller? 
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Figure 4.7.  Aperture height normalized by the size of the focusing aperture.  The dashed 
lines represent a standard circular aperture.  This figure can be used in IRA design.  
Suppose a 200Ω antenna with 60˚ electrodes is being made, looking at the graph, the 
peak value for ha occurs at a radius of 1.14 times the circle of symmetry boundary.  So if 
the aperture radius is 1 meter then the circle of symmetry radius will be 1/1.14 or 0.877 
meters. 

 

This question can be answered by looking at Figure 4.7 which is a normalized 

version of Figure 4.6.  The y-axis is ha normalized by the radius of the aperture, and the 

x-axis is the radius of the aperture normalized by the radius of the circle of symmetry.  

Therefore a relative radius value of one corresponds to an aperture with the same radius 

as the circle of symmetry.  The main difference between the two figures, is that in Figure 

4.6 the aperture is physically getting bigger along the x-axis.  In Figure 4.7, the overall 

size of the aperture remains the same, but it becomes larger relative to the circle of 
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symmetry along the x-axis.  In other words, the circle of symmetry is being made 

physically smaller.   

The maximum ha in Figure 4.7 is at an electrode angle of 30º at a radius of 

R=1.125 relative to the circle of symmetry.  The knee in the curves to the left of the circle 

of symmetry occurs at the inner edge of the feed electrode.  The knee is less obvious at 

lower angles because less of the aperture has fields oriented in the wrong direction.  Since 

this is a normalized plot, it is important to note that increase in ha is not caused by 

increasing the actual size of the aperture.  Two factors cause this increase.  First, the edge 

of the aperture is following the ideal contour instead of the circle of symmetry.  Second, 

by making the electrodes smaller relative to the circle of symmetry, the circle of 

symmetry is being made smaller relative to the edge of the aperture.   

Thus for a given aperture size with smaller electrodes, the aperture encompasses 

the portions of the input electric field that have the greatest positive effect on the prompt 

radiated electric far field. 

3. Trends 

Table 4.1 contains data for four different input impedances that are most likely to 

be used in high power applications: 100, 150, 200 and 250 Ω.  The second column 

contains the electrode measured in the plane of the aperture.  It is equal to b2 - b1 from 

Equations 3.4 and 3.5.  The third column contains the angle of the electrode measured 

clockwise from the y-axis.  The ha for a circular aperture with a radius equal to the circle 

of symmetry that does not follow the ideal contour is given in the 4th column and is titled 

ha COS. The maximum normalized ha for a circular aperture that follows the ideal 

contour is listed in the fifth column along with the relative radius that this occurs in the 

7th.  Finally the percent increase in aperture height obtained by following the ideal 

contour at the optimum relative radius verses a plain circular aperture at the circle of 

symmetry is given in the 6th column. 
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Input Z Electrode Angle ha ha Relative
ohms length theta COS ideal % incr Radius

100 2.860 30 0.443 0.453 2.11% 0.97
100 1.796 45 0.439 0.457 3.99% 1.58
100 1.029 60 0.372 0.433 16.48% 1.62
100 0.435 75 0.226 0.326 44.03% 1.34
150 1.796 15 0.584 0.589 0.84% 0.89
150 1.156 30 0.616 0.623 1.19% 1.13
150 0.704 45 0.571 0.610 6.83% 1.31
150 0.435 60 0.437 0.521 19.21% 1.26
150 0.202 75 0.243 0.347 43.07% 1.24
200 0.916 15 0.726 0.730 0.42% 0.96
200 0.521 30 0.736 0.750 1.80% 1.11
200 0.275 45 0.648 0.687 6.00% 1.16
200 0.130 60 0.480 0.559 16.63% 1.14
200 0.061 75 0.254 0.355 39.94% 1.16
250 0.435 15 0.841 0.845 0.53% 0.96
250 0.202 30 0.812 0.828 1.89% 1.09
250 0.130 45 0.678 0.719 5.97% 1.09  

Table 4.1.  Increase in aperture height due to an ideal contour shaped aperture. 
 

a.   Electrode Size 

The first noticeable trend is that the electrode size gets smaller as input 

impedance grows.  Also for a given input impedance the electrode size decreases as the 

angle of the electrode increases.  

b. Maximum Normalized ha 

The maximum normalized aperture height typically occurs at a relative 

radius greater than the circle of symmetry.  As the electrode angle decreases, the relative 

radius that the maximum ha occurs asymptotically approaches the circle of symmetry.  

This is evident in Figure 4.8.  Notice at low electrode angles, there appears to be some 

numerical noise in the curves just to the right of the circle of symmetry.  This is due to 

the relatively large size of the triangles in this region of the finite element mesh used to 

compute the location of the ideal contour.  In Table 4.1, at low electrode angles, the 

relative radius where the maximum ha occurs is less than the circle of symmetry, but 

when looking at the plots in Figure 4.8 it is evident that these values are within the error 

caused by the numerical noise and that the maximum ha is at the circle of symmetry. 
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Figure 4.8.  Normalized aperture height curves for different input impedances. 

 

c. Optimum Electrode Angle 

Initially as the electrode angle increases, the aperture height ha also 

increases.  The maximum normalized aperture height reaches a maximum value and then 

decreases as the electrode angle continues to increase.  Figure 4.9 shows that the 

maximum occurs at an angle of approximately 23˚ for the 200 Ω case.  Typically the 

optimum electrode angle for a circular aperture is between 20-25˚ [Tyo, 1999].  

d. Increase in ha Due to Following Ideal Contour 

For given input impedance, the percent increase in ha is larger at higher 

electrode angles.  This is because at higher electrode angles, a larger portion of the 

aperture that has Ey orientated in the wrong direction is removed.  This is easily seen in 

Figure 4.10. 
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Figure 4.9.  Maximum normalized ha increases as the electrode angle increases and 
reaches a maximum at 23˚.  As the electrode angle continues to increase, the value for ha 
begins to decrease. 

 

58 

Zin=200 ohms 
OH 

0 78 

U 76 

- 0.74 s 
Q) 

I 
2 0.72 h 

0 7 

068 

(0 
£ 0.66 - 

0 6 I 

0.62 

0 
0.8 0.9 1 1.1 1.2 
R - Relative Radius of Reflector Boundary 

1 5 



 

Figure 4.10.  For large electrode angles, a larger portion of the aperture has the electric 
field orientated in the wrong direction.  When this area is removed, there is a greater 
effect on the radiated electrode field than at small electrode angles.  

 

D. APERTURE TRIMMING IN ANTENNA DESIGN EXAMPLE 

As an example consider a parachute that will be delivered over a target via an 

artillery shell and once deployed transmit as much of electromagnetic energy as possible 

to the target.  The canopy of the parachute will serve as a parabolic reflector and the 

electrodes will be suspended from the canopy.  Figure 4.11 is a basic drawing of the 

parachute IRA. [Farr, 2001a] 

Mechanical considerations require that the electrodes extend no farther than the 

edge of the parachute canopy.  The proper portions of the canopy need to be metalized in 

order to maximize the radiated electric field.  Figure 4.12 is a two dimensional view of 

the parachute IRA from an observer standing underneath it along the bore sight of the 

antenna.  
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Figure 4.11.  Side view of the parachute IRA after being deployed.  The canopy of the 
parachute will be metalized to serve as the reflector of the IRA. 

 

 

 

Figure 4.12.  Two-dimensional view of the parachute IRA along its bore sight.  The 
conical feed electrodes are shown at an angle of 30˚after stereographic projection.  The 
shaded portions identify the portions of the aperture that has the input electric field 
orientated in the wrong direction, thus these areas would not be metalized in order to 
maximize the radiated prompt electric field. 
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However, there will be an improvement if the portions of the canopy outside the ideal 

contour are not metalized.  Table 4.2 summarizes the percent increase in radiated prompt 

electric field achieved due to ideal aperture shaping. 

Input Z Angle Canopy ha ha
ohms theta Radius edge ideal % incr

100 30 3.175 1.1826 1.3300 12.46
100 45 2.242 0.8241 1.0071 22.21
150 30 1.733 0.9339 1.0481 12.23
150 45 1.412 0.7282 0.8518 16.98
200 30 1.293 0.8806 0.9590 8.90
200 45 1.147 0.7104 0.7901 11.22   

Table 4.2.  Increase in radiated field for the parachute IRA due to an ideal shaped 
aperture boundary. 
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V. EXPERIMENT 
Equation Section 5 
 

A. OVERVIEW 

An experiment was conducted at the Air Force Research Lab ultra wideband 

antenna range, shown in Figure 5.1, located at Kirtland Air Force Base.  The goal of the 

experiment was to see if the results of chapter IV could be reproduced in the laboratory.  

Over a three-day period, eight different TEM feed electrode configurations were built and 

tested.  For each configuration, measurements were made with various sized circular and 

ideally shaped apertures.  The experimental setup, procedure and results are discussed in 

the following pages. 

 

Figure 5.1.  AFRL ultra-wideband antenna range. 

 

B. EXPERIMENT SETUP 

A schematic diagram of the experimental setup is shown in Figure 5.2.  In order 

to use available equipment and simplify data collection, a half-lens IRA operating in the 

receive mode was used.  Some discussion on this choice is needed since typically in 

electronic warfare applications IRAs are reflector antennas operating in the transmit 

mode. 

63 



 

Figure 5.2.  Schematic diagram of the experimental setup. 

 

1. The IRA 

The received response of an IRA is related to the transmitted response by a 

property called reciprocity.  Reciprocity relates the transmitted and received signals of an 

IRA by a simple derivative.  In short, the transmitted field from an IRA is the derivative 

of the received field under the same excitation. [Farr and Baum, 1992b] 

Second, using a lens instead of a reflector sounds like a big change, but remember 

that the surface area integrated over to find the radiated electric field in Equation 2.17 is a 

post stereographic projection two-dimensional surface.  As seen in Figure 5.3, the 

aperture has the same boundaries whether a reflector or a lens is used.  Also, from 

Equation 2.50 the aperture height, which determines the radiated electric field, is actually 

computed using a contour integral along the outer edge of the focusing optic. 

The method in which aperture portions are blocked to remove the input electric 

field orientated in the wrong direction depends on whether a lens or reflector is being 

used.  For a reflector, the aperture would be built using an electromagnetically 

transparent material and only the areas that contribute constructively to the radiated 

electric field would be metalized.  Thus the antenna would only “reflect” or transmit the 

electric field that is orientated in the correct direction.  
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Figure 5.3.  Aperture integrated over is the same for both a lens and reflector. 

 

For a lens, the portions with the input electric field orientated in the wrong 

direction are covered with metal foil.  Note that the “bad” portions of the lens have to be 

blocked and not trimmed away.  Referring to Figure 5.3, notice that if a portion of the 

lens were trimmed away, the “bad” electromagnetic field would reach the aperture, thus 

interfering with the prompt response.  Metal foil will effectively block the prompt 

response of the input signal.  The foil does have an effect in the late time but for 

electronic warfare applications we are primarily interested in the prompt response. 

The polyethylene lens, shown in Figure 5.4 is plano-convex with a 12-inch radius 

and a 28-inch focal length.  A number of different sized feed electrodes can also be seen 

in Figure 5.4.  In order to minimize feed blockage the electrodes were made with 1/16-

inch aluminum, anything thinner would not allow the electrodes to maintain their shape.  

To allow the electrodes to be soldered together, copper tape was applied to the tips. 

2. The range 

The range consists of a 40x20 foot rectangular ground plane with a 4 ns clear 

time.  As seen in Figure 5.5, clear time refers to the difference in time to traverse the 

range between a wave traveling along the center and the shortest reflected wave.  The 

ground plane was made using 1/8-inch thick aluminum sheets resting on top of a number 

65 

Aperture integrated over 

reflector lens 



       

       (a)             (b)     (c) 

Figure 5.4.  (a) IRA used for measurements  (b) Lens  (c) Various sized electrodes. 

 

of tables for support.  A 4 ns monocone antenna, excited by a Picosecond Pulse Labs 

4050B step generator, shown in Figure 5.6 transmitted spherical TEM waves across the 

range to the IRA operating in the receive mode.  The step generator was set to transmit 

47-ps rise time, 10 volt, 10-ns duration voltage steps.   

 

 

Figure 5.5.  A 4ns clear time means that a wave traveling along A will reach the end of 
the range 4ns before the shortest reflected wave B. 
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Figure 5.6.  Picosecond Pulse Labs 4050B step generator and the 4 ns monocone antenna 
 

    

         (a)     (b) 

Figure 5.7.  (a) Tektronix Digital Sampling Oscilloscope (b) Top view of the focal point 
of IRA showing the TEM electrodes connected to the co-axial cable protruding through 
the ground plane. 

 

3. Data collection 

Measurements were taken at the focal point of the IRA with a Tektronix 

CSA803A digital sampling oscilloscope shown in Figure 5.7.  The copper tape tipped 

TEM electrodes were soldered together and connected to the center wire of a copper co-

axial connector protruding through the ground plane.  The signal was then fed to the SD-

24 sampling head of the oscilloscope by a 50Ω co-axial cable. In order to prepare for an 

incoming signal, the oscilloscope was given a sixty-five-nanosecond warning by the step 

generator via the pre-trigger cable, shown in Figure 5.2, between the generator and 

oscilloscope.   
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C. MEASUREMENTS 

Eight different TEM feed electrode size and angle combinations were tested.  For 

each configuration, a template of the ideal contour with a circle of symmetry radius of 8-

inches was made.  An 8-inch circle of symmetry was chosen so that apertures larger than 

the circle of symmetry could be measured with the 12-inch lens.  Aluminum foil masks in 

the shape of the ideal contour were made with the templates.  Covering the lens above the 

ideal contour blocked the undesired portions of the prompt response.  The foil mask 

attached to the flat surface of the lens can be seen in Figure 5.8.  To simulate different 

sized apertures relative to the circle of symmetry, one-inch thick metal semicircles shown 

in Figure 5.9 were attached to the lens. 

    

   (a)           (b) 

Figure 5.8.  (a) Template that was used to cut the metal foil used to block the areas of the 
aperture above the ideal contour.  (b) Metal foil template attached to the flat surface of 
the lens. 

 

1. Measuring Input Impedance 

The first measurement taken for each electrode configuration was the input 

impedance.  A result close to the theoretical value gives an indication of how well the 

electrodes were built. 
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Figure 5.9.  One-inch metal foil strips were used to simulate different sized apertures by 
blocking the prompt response of the IRA. 
 

The input impedance was measured by setting the oscilloscope SD-24 probe in 

the time domain response (TDR) mode.  In the TDR mode, the oscilloscope sends a 

voltage step to the feed of the antenna and the plot in Figure 5.10 is produced.  The y-axis 

is the unitless reflection coefficient ρ and time is on the x-axis.  Each jump in the curve 

represents an impedance mismatch boundary.  The first flat region is the cable connecting 

the SD-24 to the feed point.  This cable has a known impedance of 50 Ω.  The line 

corresponding to the cable should be at a value of ρ = zero; however the SD-24 had an 

offset error that could not be calibrated out.  Because of this offset, measuring the 

difference in ρ between the electrodes and cable and inputting this value into the 

following equations was used to find the impedance of the TEM electrodes: 

 ( ) ( )

,

1 1
1 .
1

electrode cable

electrode cable

electrode cable

electrode cable

Z Z
Z Z

Z Z

Z Z

ρ

,ρ ρ
ρ
ρ

−
=

+

− = +

+
=

−

 (5.1) 

The theoretical input impedance is twice the value for Zelectrode because the 

theoretical antenna has a full circle aperture and 2 TEM feeds, while the experimental 

IRA is only a ½ circle aperture resting on a ground plane. 
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Figure 5.10.  Plot of TDR response used to find impedance 

 

2. Measuring the Aperture Height 

Once the input impedance was found, the received step response of the IRA was 

measured.  Recall that the step generator driving the monocone antenna transmitted 47ps 

rise time, 10 volt, 10 ns duration voltage steps.  The Tektronix oscilloscope was given a 

65-ns pre-trigger signal from the step generator to get ready for an incoming signal.  The 

oscilloscope averaged 64 records for each received waveform.  The samples were taken 

0.25-ps apart and each record contained 2048 points.  Figure 5.11 shows an entire 

received waveform for the 200Ω, 40˚ electrode case. 
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Figure 5.11.  Received step response for a 200Ω, 40˚ electrode IRA 

 

In order to measure the aperture height the incident electric field has to be 

measured.  Unfortunately the equipment to measure this was not available.  However as 

evident in Equation 2.20, the voltage of the received signal is directly proportional to ha 

and can easily be measured. 

The step response voltage ∆v in Figure 5.10 is the difference between the peak of 

the step response and the flat portion of the waveform before the step response.  Voltage 

measurements were taken for ideal shaped apertures of radii of 3, 4, 5, 6, 7, 8, 9, 10, and 

12-inches.  Standard circular apertures not following the ideal contour were measured at 

radii of 8 and 12 inches.  The waveforms for the 8 and 12-inch ideal and circular cases 

were saved in Excel spreadsheet formats for later analysis.  The measured data for each 

of the eight IRA configurations tested are contained in Appendix A. 
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D. RESULTS 

1. Plotting the Results. 

There is some high frequency noise apparent in Figure 5.12.  To remove this 

noise, the data was run through an eight picosecond Gaussian filter.  Also there is the 

voltage offset caused by a problem with the SD-24 sampling head.  Figure 5.12 shows 

one waveform in its unfiltered, filtered and offset removed forms.  The waveform 

“walking in and out” of the Gaussian filter causes the “tails” at the beginning and end of 

the filtered waveform. 

Figure 5.13 shows the received voltage prompt response for the 200Ω, 30˚ feed 

electrode angle case.  Notice that the received signal is a fast rising step with a risetime of 

~50-picoseconds which is consistent with the signal transmitted by the monocone 

antenna. As predicted, the ideal apertures have a higher magnitude step response than the 

circular apertures.  Also, the 12-in aperture has a larger percent increase than the smaller 

8-in aperture.  The bottom portion of the figure shows the corresponding signal that 

would be transmitted due to reciprocity.  The plots for all eight tested electrode 

configurations are contained in Appendix A. 

2. Comparing Calculated and Measured Results 

 Figures 5.14, 5.15 and 5.16 compare the measured results with the calculated 

results.  The solid lines represent the calculated results using the methods in Chapters III 

and IV.  The x-marks are actual measured data.  Figure 5.14 is the aperture height vs. the 

radius of the aperture that follows the ideal contour for the 200Ω cases.  Figure 5.15 is the 

normalized aperture height vs. the radius of the aperture relative to the circle of symmetry 

for the 200Ω cases.  Figure 5.16 contains both the normalized and un-normalized data for 

the 250Ω cases.  The data in these figures is discussed below. 
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Figure 5.12.  An 8ps Gaussian filter was used to remove high frequency noise from the 
step response 
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Figure 5.13.  Received step response and corresponding transmit impulse response for a 
200Ω, 30˚ electrode.  Notice that the late time response becomes apparent around 320 
picoseconds. 

 
a. Comparing Aperture Height ha to Measured ∆v 

In order to compare the calculated ha to the measured ∆v on the same plot, 

all of the data is referenced to the values obtained at the circle of symmetry.  To 

accomplish this the calculated values for ha were plotted vs. the radius of the aperture.  

Then the ha value for an aperture with radius equal to that of the circle of symmetry is 

obtained from this plot.  The measured ∆v is then multiplied by the ratio of the calculated 

ha at the circle of symmetry to the measured ∆v at the circle of symmetry. 

b. Match Between Experiment and Numerical Results 

The un-normalized data in Figures 5.14 and 5.16 show that the 

experimental results closely follow the calculated in overall trend, slope and magnitude 
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with the possible exception of the 60˚ 200Ω case.  However, this was the last case tested 

and the SD-24 sampling head for the Tektronix oscilloscope malfunctioned so an SD-26 

sampling head was used in its place. 

At smaller radii the measured values stray from the calculated.  This is 

more apparent in the normalized curves of Figures 5.15 and 5.16.  This was most likely 

caused by measurement error.  Notice in Figure 5.9 that the size of the unblocked 

aperture relative to the size of the TEM electrodes is small, therefore the received signal 

is much smaller thus making the data taking more difficult.  Also, the late time response 

caused by all of the metal foil seen in Figure 5.9, begins to obscure the prompt response.  

Instead of having a nice step similar to Figure 5.11 response to measure the ∆v value, the 

response looks similar to Figure 1.3 case F. 

3. Possible Sources for Experimental Error 

The trends of the aperture height data do follow the calculated results, 

however it appears that there is some experimental error present.  The lens used in the 

IRA setup was the only precision-machined part.  The electrodes were made by hand and 

cut with metal cutting shears.  The angles in the triangular electrodes were at best one to 

two degrees off of specification.  The paper templates were within one tenth of an inch, 

however the metal masks that were made using the templates were hand made with an 

exacto-knife.  the circular strips used to simulate different aperture sizes were also hand 

made.  It was also difficult to cut the foam supports used to hold the electrodes at the 

proper angle. 

During the conduct of the experiment, the metal foil semi-circular strips were 

attached and removed from the lens numerous times.  Near the end of the three days, 

these strips were not as “flush-fitting” as they were in the beginning.  Future experiments 

should use masks made of a more rigid material and also measure increments smaller 

than one inch. 

There was one possible source of error due to equipment malfunction.  The SD-24 

probe had an offset from the beginning that could not be calibrated out.  And on the third 

day, the probe stopped working entirely.  
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Figure 5.14.  Experimental values for ha denoted by the x’s compared to calculated data 
for 200Ω IRAs 
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Figure 5.15.  Experimental values for Normalized ha denoted by the x’s compared to 
calculated data for 200Ω IRAs 
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Figure 5.16.  Experimental values for ha and Normalized ha denoted by the x’s compared 
to calculated data for 200Ω IRAs 
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VI. CONCLUSION AND RECOMMENDATIONS 
 
 

A. CONCLUSION 

The prompt radiated electric field from an IRA can be improved by changing the 

shape of the aperture to eliminate the portions of the aperture that contribute negatively to 

the far field.  In chapter II it was shown using the Field Equivalence Principle that the 

prompt radiated electric field in the far field is proportional to the integral of the 

transverse electric field on the surface of the focusing aperture.  The portions of the 

aperture electric field that contribute negatively to the radiated electric field were then 

found in chapter III.  The aperture boundary that encloses only positively contributing 

electric field is termed the ideal contour. 

The ideal contour was then found for a number of different IRA configurations 

and the resulting change in aperture height are presented in chapter IV.  The radiated 

electric field is proportional to the aperture height, ha, which in turn is proportional to the 

integral of the transverse electric field on the surface of the aperture.  Therefore, by 

maximizing ha, the radiated electric field will also be maximized.  It was found that 

apertures whose boundaries follow the ideal contour always show an improvement in the 

radiated electric field.  As a general rule antennas with large electrode angles tended to 

show a more dramatic increase in radiated electric field than those with smaller angles. 

The experiment conducted at the AFRL ultra wideband antenna range confirmed 

the calculated trends discussed in chapter IV.  Normalized values of aperture height were 

measured since the actual magnitude was not measured due to lack of proper equipment. 

Future IRA design can take advantage of the methods discussed in this thesis to 

optimize their prompt radiation characteristics.  For an IRA with a fixed aperture size, 

moving the circle of symmetry relative to the maximum aperture size can optimize the 

radiated fields.  In the parachute example discussed, the aperture size and the electrode 

size were both fixed thus fixing the position of the circle of symmetry.  The radiated field 

was optimized for this case by removing the portions of the aperture with the electric 

field orientated in the wrong direction. 
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B. RECOMMENDATIONS 

In this work the “aperture windows” studied were circular in shape.  Some 

applications may have a square or rectangular aperture window.  An extensive database 

of ideal contour data for many different TEM feed electrode configurations has been 

created.  It should be a relatively simple task to apply different shaped aperture windows 

to these ideal contours. 

For applications other than electronic warfare, the late time response of the far 

field characteristics are desired.  As seen in some of the experimental results, aperture 

shaping does have an effect in the late time.  Aperture shaping to increase the prompt 

response may have detrimental effects on the late time response. 

The experiment conducted did show that effects of aperture trimming follow the 

same trends as the calculated results however only normalized data was available.  Future 

experiments should attempt to minimize the possible sources of error mentioned in 

chapter V and also measure the electric field on the surface of the aperture so the actual 

magnitude of the aperture height can be determined. 
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APPENDIX A 
 
 

A. FIRST TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 25_35 
Electrode Angle: 15˚ (measured clockwise from y-axis) 
∆ρ:  0.424  123.61Ω  247.22Ω 
Theoretical input impedance: 250.66Ω 
Scope settings: 10 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
12-in ideal 43.8 64 2048 feb28_01.xls 
10-in ideal 39.4 64 2048  
9-in ideal 35.8 64 2048  
8-in ideal 32.8 64 2048 feb28_02.xls 
7-in ideal 28.2 64 2048  
6-in ideal 22.4 64 2048  
5-in ideal 16.6 64 2048  
4-in ideal 13 64 2048  
3-in ideal 10 64 2048  

12-in clear 38.4 64 2048 feb28_03.xls 
 
Comments: 
 

• The input impedance was found using Equation 5.1 
• The circle of symmetry for these antenna configurations has a radius of 8 inches. 
• The 8-inch circular non-ideal aperture was not measured for this case 
• The ideal contour template was attached to the lens and then measurements were 

taken for 12 to 3 inch radii.  The circular non-ideal or “clear” 12 inch 
measurement was taken last. 

• The magnitude of the received step response is largest for the 12 inch ideal case 
as expected. 

• This was the only IRA configuration tested on February 28th. 
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Figure A.1.  Step and impulse response. 
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B. SECOND TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 27_31 
Electrode Angle: 45˚ (measured clockwise from y-axis) 
∆ρ:  0.336  100.62Ω  200.20Ω 
Theoretical input impedance: 203.10Ω 
Scope settings: 10 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
 mar01_01.xls 

12-in ideal 42.0 64 2048 mar01_02.xls 
10-in ideal 37.2 64 2048  
9-in ideal 34.0 64 2048  
8-in ideal 29.8 64 2048 mar01_03.xls 
7-in ideal 24.2 64 2048  
6-in ideal 19.0 64 2048  
5-in ideal 14.8 64 2048  
4-in ideal 10.8 64 2048  
3-in ideal 9.4 64 2048  

12-in clear 31.6 64 2048 mar01_04.xls 
8-in clear 29.8 64 2048 mar01_05.xls 

 
Comments: 
 

• mar01_01.xls is the time domain response used to find the input impedance of the 
antenna.  This is the data used to make Figure 5.10. 

• This was the first antenna configuration measured on March 1st. 
• The measurements were taken in the same order as the first case with the addition 

of an eight inch clear aperture. 
• The late time effect of the metal foil is easily visible on the eight inch clear case at 

about 250 ps.  The waviness of the impulse response after the initial pulse is also 
due to the late time effects. 

• The data follows the expected trends of ideal is better than clear and larger size 
produces larger magnitudes. 
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Figure A.2.  Step and impulse response. 
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C. THIRD TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 24_34 
Electrode Angle: 30˚ (measured clockwise from y-axis) 
∆ρ:  0.320  97.06Ω  194.12Ω 
Theoretical input impedance: 197.44Ω 
Scope settings: 10 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
12-in ideal 48.2 64 2048 mar01_06.xls 
10-in ideal 40.8 64 2048  
9-in ideal 37.2 64 2048  
8-in ideal 32.8 64 2048 mar01_07.xls 
7-in ideal 28.6 64 2048  
6-in ideal 23.2 64 2048  
5-in ideal 17.8 64 2048  
4-in ideal 13.0 64 2048  
3-in ideal 9.2 64 2048  
8-in clear 32.0 64 2048 mar01_08.xls 

12-in clear 39.0 64 2048 mar01_09.xls 
 
 
Comments: 
 

• The 8 inch clear was measured prior to the twelve inch clear in this case. 
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Figure A.3.  Step and impulse response. 
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D. FOURTH TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 26_24 
Electrode Angle: 20˚ (measured clockwise from y-axis) 
∆ρ:  0.416  121.23Ω  242.46Ω 
Theoretical input impedance: 246.85Ω 
Scope settings: 10 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
12-in ideal 43.0 64 2048 mar01_10.xls 
10-in ideal 37.0 64 2048  
9-in ideal 33.0 64 2048  
8-in ideal 30.2 64 2048 mar01_11.xls 
7-in ideal 25.4 64 2048  
6-in ideal 20.4 64 2048  
5-in ideal 16.8 64 2048  
4-in ideal 12.2 64 2048  
3-in ideal 9.0 64 2048  
8-in clear 31.6 64 2048 mar01_12.xls 
8-in ideal 31.6 64 2048 mar01_13.xls 

12-in clear 35.8 64 2048  
 
Comments: 
 

• Due to the shallow angle, the ideal aperture removed only a small portion of the 
aperture inside the circle of symmetry.  This explains the close values of the 8 
inch clear and ideal cases. 

• The file for the 12 inch clear step response was inadvertently erased. 
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Figure A.4.  Step and impulse response. 
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E. FIFTH TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 23_23 
Electrode Angle: 25˚ (measured clockwise from y-axis) 
∆ρ:  0.331  99.47Ω  198.15Ω 
Theoretical input impedance: 204.96Ω 
Scope settings: 10 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
12-in clear 40.4 64 2048 mar01_14.xls 
12-in ideal 43.6 64 2048 mar01_15.xls 
8-in ideal 32.4 64 2048 mar01_16.xls 
7-in ideal 28.4 64 2048  
6-in ideal 23.4 64 2048  
5-in ideal 18.2 64 2048  
4-in ideal 13.6 64 2048  
3-in ideal 11.2 64 2048  

10-in ideal 38.2 64 2048  
9-in ideal 34.8 64 2048  
8-in clear 33.2 64 2048 mar01_17.xls 
8-in ideal 33.0 64 2048 mar01_18.xls 

 
Comments: 
 

• The 12 inch clear case was measured first. 
• The eight inch clear ideal case was measured twice.  Again, there is not much 

difference between the 8 inch ideal and clear case due to the shallow electrode 
angle.  Only one 8 inch wave form was plotted. 
 

89 



 
 

Figure A.5.  Step and impulse response. 
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F. SIXTH TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 25_19 
Electrode Angle: 35˚ (measured clockwise from y-axis) 
∆ρ:  0.320  97.06Ω  194.12Ω 
Theoretical input impedance: 192.81Ω 
Scope settings: 10 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
12-in clear 34.2 64 2048 mar01_19.xls 
8-in clear 29.8 64 2048 mar01_20.xls 
8-in ideal 30.2 64 2048 mar01_21.xls 
7-in ideal 26.2 64 2048  
6-in ideal 20.4 64 2048  
5-in ideal 15.0 64 2048  
4-in ideal 11.0 64 2048  
3-in ideal 10.4 64 2048  

12-in ideal 43.0 64 2048 mar01_22.xls 
10-in ideal 36.6 64 2048  
9-in ideal 32.6 64 2048  

 
Comments: 
 

• The order in which the measurements were made was changed.  First the clear 12 
and 8 inch cases were measured.  Then the ideal 8 through 3 inch cases were 
measured, then the 12 through 9 inch ideal cases were measured. 
 

91 



 
 

 
Figure A.6.  Step and impulse response. 
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G. SEVENTH TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 26_17 
Electrode Angle: 40˚ (measured clockwise from y-axis) 
∆ρ:  0.326  98.37Ω  196.74Ω 
Theoretical input impedance: 211.69Ω 
Scope settings: 10 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
 mar01_23.xls 

12-in clear 34.0 64 2048 mar01_24.xls 
8-in clear 28.6 64 2048 mar01_25.xls 
8-in ideal 30.6 64 2048 mar01_26.xls 
7-in ideal 25.6 64 2048  
6-in ideal 20.2 64 2048  
5-in ideal 15.8 64 2048  
4-in ideal 12.0 64 2048  
3-in ideal 9.2 64 2048  

12-in ideal 42.4 64 2048 mar01_27.xls 
10-in ideal 37.0 64 2048  
9-in ideal 33.4 64 2048  

 
Comments: 
 

• mar01_23.xls is the entire 10ns received step response.  This data was used to 
make Figure 5.11. 

• This was the last configuration tested on March 1st. 
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Figure A.7.  Step and impulse response. 
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H. EIGHTH TEM FEED ELECTRODE CONFIGURIATION 

 
Feed Identifier: 28_33 
Electrode Angle: 60˚ (measured clockwise from y-axis) 
∆ρ:  Did not have SD-24 TDR 
Theoretical input impedance: 190.00Ω 
Scope settings: 5 mv/div, 50 ps/div 
 

Aperture ∆v (mV) Averages # points Filename 
 mar02_01.xls 

12-in clear 22.2 64 2048 mar02_02.xls 
8-in clear 20.9 64 2048 mar02_03.xls 
8-in ideal 22.9 64 2048 mar02_04.xls 
7-in ideal 19.0 64 2048  
6-in ideal 15.6 64 2048  
5-in ideal 12.2 64 2048  
4-in ideal 9.9 64 2048  
3-in ideal 7.8 64 2048  

12-in ideal 31.8 64 2048 mar02_05.xls 
10-in ideal 27.8 64 2048  
9-in ideal 25.6 64 2048  

 
Comments: 
 

• The SD-24 probe malfunctioned so a SD-26 probe that does not have the time 
domain response mode was used as a replacement.  Therefore the input 
impedance was not measured. 

• mar02_01.xls is the entire 10 ns received step response. 
• This was the only electrode configuration tested on March 2nd. 
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Figure A.8.  Step and impulse response. 
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